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Southern Siberia during the past 10,000 years. Apart from 
its migration through the Beringia to the Americas, haplo-
group Q also moved from Asia to the south and to the west 
during the Neolithic period, and subsequently to the whole 
of Eurasia and part of Africa.
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Introduction

In recent decades, the human Y-chromosome has proven to 
be a powerful tool for tracing the paternal history of human 
populations and genealogical ancestors. The human Y-chro-
mosome haplogroup Q (also named Q-M242 in accordance 
with its defining mutation) probably originated in Central 
Asia and Southern Siberia during the time period of 15–25 
KYA (1000 years ago) (Karafet et al. 2002, 2008; Bortolini 
et al. 2003; Seielstad et al. 2003), then subsequently dif-
fused in the eastward, westward and southward directions 
(Zhong et al. 2011; Di Cristofaro et al. 2013; Sandoval et al. 
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2013; Liu et al. 2014; Rasmussen et al. 2014). Haplogroup 
Q has several subclades defined by single nucleotide poly-
morphisms (SNPs), and it reaches its highest frequency of 
70–100% in the Americas (Bortolini et al. 2003; Seielstad 
et al. 2003; Zhong et al. 2011; Rasmussen et al. 2014). 
Although the diversity of haplogroup Q in the Americas has 
been studied in detail (Bisso-Machado et al. 2011; Toscanini 
et al. 2011, 2016; Jota et al. 2011; Malyarchuk et al. 2011; 
Dulik et al. 2012b; Battaglia et al. 2013; Lardone et al. 2013; 
Melton et al. 2013; Regueiro et al. 2013; Noguera et al. 
2014; Sala and Corach 2014; Torres et al. 2015), investiga-
tions on the diffusion of haplogroup Q in Eurasia and Africa 
are still limited. Consequently, we studied samples of haplo-
group Q in Eurasia to explore how it expanded from Central 
Asia and Southern Siberia during the Neolithic period.

The ancestors of present-day Native Americans migrated 
to the Americas from Siberia via the Beringia around 16 
KYA (Raghavan et al. 2015; Llamas et al. 2016). Q1a2a1-
L54 and its subclade Q1a2a1a1-M3 are the two predominant 
subclades of haplogroup Q found on both sides of the Bering 
Strait. Q1a2a1-L54 has spread throughout Northern Asia, 
the Americas, and Western and Central Europe (Raff and 
Bolnick 2014; Rasmussen et al. 2014). An ancient individual 
of the Clovis culture belonged to Q1a2a1-L54 (xQ1a2a1a1-
M3) (O’Rourke and Raff 2010; Rasmussen et al. 2014). 
Q1a2a1a1-M3, one of the most thoroughly studied subclades 
within haplogroup Q, is frequent both in the Chukotka Pen-
insula of Siberia (close to Alaska) and the Americas (Lell 
et  al. 2002). Previous studies indicated that Q1a2a1a1-
M3 migrated from Siberia to the Americas and partially 
returned to Siberia (Hammer et al. 1997; Lell et al. 1997; 
Bortolini et al. 2003; Pakendorf et al. 2007). The estimated 
time of Q1a2a1a1-M3 is 13-22 KYA (Dulik et al. 2012a). 
Q1a2a1a1a-M19, a subclade of Q1a2a1a1-M3, remained in 
Southern America and has a similarly diversified pattern 
with its upstream lineage. The age of Q1a2a1a1a-M19 is 
approximately 7–8 KYA (Bortolini et al. 2003; Jota et al. 
2011).

The frequencies of haplogroup Q range from 0 to 94% 
in Eurasia (approximately 5% on average) (Seielstad et al. 
2003; Varzari et al. 2013). Haplogroup Q reaches its high-
est frequencies in Siberia, especially in Kets (90–94%) and 
Selkups (66–71%), and is rarely seen in Western, Southern 
and South-eastern Asia (Wells et al. 2001; Zerjal et al. 2002; 
Tambets et al. 2004; Sengupta et al. 2006; Sharma et al. 
2007; Haber et al. 2011a, b; Dulik et al. 2011; Grugni et al. 
2012; Di Cristofaro et al. 2013; Rasmussen et al. 2014). Sub-
clade Q1a1a1-M120 appears almost only in Eastern Asia, 
and its diversity implies that haplogroup Q has migrated 
from north to south with the ancestors of current Han Chi-
nese during the Neolithic period (Su et al. 2000; Wells et al. 
2001; Tarazona-Santos et al. 2001; Wen et al. 2004; Gayden 
et al. 2007; Nonaka et al. 2007; Zhong et al. 2011; Zhao 

et al. 2015). Subclades Q1a1b-M25 and Q1a2-M346 have 
spread widely in Eurasia. Q1a1b-M25 reaches its highest 
frequency in Turkmen (34–43%) and shows low frequencies 
in other Eurasian populations (Underhill et al. 2000; Mal-
yarchuk et al. 2011; Zhong et al. 2011), while Q1a2-M346 
appears in Central, Western and Southern Asia, and most 
parts of Europe (Sengupta et al. 2006; Sharma et al. 2007; 
Abu-Amero et al. 2009; Bailliet et al. 2009).

Haplogroup Q has also appeared in other parts of the 
world. For instance, an ancient DNA study of a Saqqaq indi-
vidual in Greenland suggests that haplogroup Q1a-MEH2 
was frequent in Siberian and Native American populations 
(Karafet et al. 2008; Rasmussen et al. 2010; Raghavan et al. 
2015). A few subclades of haplogroup Q have been iden-
tified in the Comoros population in Africa (Q1a2-M346) 
and the Polynesian islands in Oceania (Q1a2a1a1c-M199) 
(Hurles et al. 2003; Msaidie et al. 2010).

Nowadays, the distribution of haplogroup Q in the Ameri-
cas has been studied thoroughly, but we know little about its 
dispersals on western and southern routes. In this study, we 
present an analysis of some SNP subclades of haplogroup Q, 
including Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-
M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and 
Q1b1a1-L245. Based on NETWORK and BATWING analy-
ses of haplogroup Q, we were able to better understand its 
dispersals on western and southern routes, and their impacts 
on Eurasian populations.

Materials and methods

Ethic statement

This study was conducted after the approval of the Ethical 
Committee of the School of Life Sciences, Fudan University 
(Shanghai, China) and the ethical committee of the Lomono-
sov Moscow State University (Moscow, Russia). All donors 
of samples were completely informed and signed informed 
consent forms before sample collection.

Population samples

In this study, a total of 471 unrelated male samples were 
analyzed. We collected blood samples of 1757 healthy and 
unrelated volunteers from five populations in China, includ-
ing 700 Hui, 64 Bao-An, 109 Dong-Xiang, 90 Li-Qian, and 
794 Shao-Xing individuals. In addition, we collected saliva 
samples of 30 healthy and unrelated volunteers from 3 popu-
lations in Russia, including 4 Enets, 19 Ket, and 7 Selkup 
individuals. After genotyping all samples, we confirmed that 
16 samples of China and 23 samples of Russia belonged to 
haplogroup Q, which were further investigated in this study. 
Furthermore, data from previous studies were also analyzed 
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(Bailliet et al. 2009; Zhong et al. 2011; Lacau et al. 2012; 
Dulik et al. 2012; Di Cristofaro et al. 2013; Sandoval et al. 
2013; Varzari et al. 2013; Hollard et al. 2014; Liu et al. 
2014; Family Tree DNA). The populations were categorized 
in accordance with the location of residence as follows: from 
Gansu province of China: Bao-An, one individual from Ji-
Shi Mountain; Dong-Xiang, two individuals from Dong-
Xiang county, Hui Autonomous Prefecture of Lin-Xia; Li-
Qian, four individuals from Yong-Chang county, Jin-Chang 
city; from Zhejiang Province of China: Shao-Xing, nine 
individuals from Shao-Xing city. In the Krasnoyarsk Region 
of Russia: Enets—two individuals from Potapovo; Ket—one 
individual from each of Farkovo, Sulomai/Bor, Sumarokovo, 
Turukhansk, and Verkhneimbatsk, two individuals from each 
of Bakhta, Baklanikha and Kellog, and five individuals from 
Sulomai; Selkup—three individuals from Farkovo, and two 
individuals from Turukhansk. These three populations are 
considered minorities in Russia according to the 2002 All-
Russia Population Census (ESM_3). Enets (named Entses 
in ESM_3) has 237 individuals; Ket has 1494 individuals; 
Selkup has 4249 individuals.

Y‑chromosome markers

Genomic DNA was extracted from the blood samples using 
the DP-318 Kit (Tiangen Biotechnology, Beijing, China), 
and the DNA extraction protocol for the saliva samples 
was adapted from the high-salt DNA extraction method 
(Quinque et al. 2006). The samples were typed as the most 
recent Y-chromosome phylogenetic tree (ISOGG 2017). The 
selected samples belonged to several subclades of haplo-
group Q.

Binary markers were hierarchically genotyped by SNaP-
shot (ABI SNaPshot Multiplex Kit, Carlsbad, CA, USA) 

and fluorescent allele-specific PCR. The PCR products were 
electrophoresed on a 3730xl Genetic Analyzer (Applied Bio-
systems, Carlsbad, CA, USA). Seventeen Y-chromosomal 
STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, 
DYS392, DYS393, DYS385a, DYS385b, DYS438, DYS439, 
DYS437, DYS448, DYS456, DYS458, DYS635 and YGA-
TAH4) were amplified using the AmpFlSTR Yfiler PCR 
amplification kit (Applied Biosystems). The amplified prod-
ucts were separated and identified using a 3730xl Genetic 
Analyzer (Applied Biosystems) according to the protocol 
recommended by the manufacturer. The data were analyzed 
using a Gene-Mapper ID v3.2 (Applied Biosystems). In 
the analyses, DYS389II was calculated by subtracting the 
DYS389I allele size.

Statistical analyses

Networks of Y-chromosomal STR data were constructed by 
the reduced-median method using NETWORK v. 5.0.0.1 
(http://www.fluxus-engineering.com) with haplogroups 

Fig. 1   Worldwide distribution 
of haplogroup Q-M242. The 
blue star is the original place 
of haplogroup Q-M242, around 
Central Asia and Siberia. The 
brown number one is Rus-
sian sample location in the 
Krasnoyarsk Region. The brown 
number two is Chinese sample 
location in Gansu province. The 
brown number three is Chinese 
sample location in Zhejiang 
province. The red arrows are 
the expansion routes of hap-
logroup Q-M242. The purple 
words show the locations of 
subclades of haplogroup Q used 
in this study. The orange points 
represent the sample locations 
collected from published studies 
(ESM_2) (color figure online)

Fig. 2   Phylogenetic tree of Y-chromosome haplogroup Q-M242. The 
haplogroup labeling is in agreement with the ISOGG conventions and 
recent updates (ISOGG 2017). The used subclades are showed in bold 

http://www.fluxus-engineering.com
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Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, 
Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and 
Q1b1a1-L245. Because we collected samples from dif-
ferent studies, we had to adjust the number of loci used in 
our study to match those of other studies. The network of 
Q1a1a1-M120 was constructed with seven loci: DYS19, 
DYS389I, DYS389II, DYS390, DYS391, DYS392, and 
DYS393. The network of Q1a2a1-L54 was constructed with 
15 loci: DYS19, DYS389I, DYS389II, DYS390, DYS391, 
DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, 
DYS456, DYS458, DYS635 and GATA H4. The networks of 
Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, 
Q1b1a-M378, and Q1b1a1-L245 were each constructed with 
ten loci: DYS19, DYS389I, DYS389II, DYS390, DYS391, 
DYS392, DYS393, DYS437, DYS438 and DYS439.

We used the Markov chain Monte Carlo (MCMC) 
approach (Wilson et al. 2003) incorporated into the pro-
gram BATWING to estimate the time to the most recent 
common ancestor (TMRCA) and the expansion time of 
the aforementioned Q subclades. Time estimates for sub-
clades of haplogroup Q were made using seven to fifteen 
of the STRs listed above. A model of exponential growth 
from an initially constant-sized population was employed 
in BATWING for obtaining the time estimates. Four sets 
of widely used Y-STR mutation rates were applied in the 
time estimates as Wei et al. (2013): evolutionary mutation 
rate (EMR) (Zhivotovsky et al. 2004), two observed genea-
logical mutation rates (OMRB and OMRS) (Shi et al. 2010; 
Burgarella and Navascués 2011), and a genealogical muta-
tion rate adjusted for population variation using a logistic 
model (lmMR) (Wilson et al. 2003). A generation time of 
30 years was used to produce a time estimate in years (Trem-
blay and Vézina 2000). We applied weakly informative prior 
distribution parameters in BATWING estimations to ana-
lyze populations individually. For the initial effective popu-
lation size (N), we used a broad prior gamma (1, 0.0001) 
(mean = 10,000, SD = 10,000). For population growth rate 

per generation (α), we also used the broad prior distribu-
tion gamma (2, 400) (mean = 0.005, SD = 0.0035). For 
the time in coalescent units when exponential growth (β) 
began we used gamma (2, 1) (mean = 2, SD = 1.41) (Xue 
et al. 2006). A total of 104 samples of the program’s output 
representing 106 MCMC cycles were taken after discarding 
the first 3 × 103 samples as “burn-in” (Xue et al. 2006), 
and convergence was confirmed by examining longer runs 
for all populations and finding the same posterior distribu-
tions. The TMRCA was calculated using the product of the 
estimated population size N and the height of the tree T (in 
coalescent units).

A contour map for the frequencies of haplogroups 
Q-M242 was generated using the Kriging procedure with the 
aid of the Golden Software Surfer 11 (Golden Software Inc., 
CO, USA) (Fig. 1). Since the frequency data were obtained 
from many sources, the identified subclades of haplogroup 
Q were different. To show all frequencies in one figure, we 
integrated the frequencies of different subclades into fre-
quencies of Q-M242. The raw frequency data and references 
are shown in ESM_2.

Results

Worldwide distribution of haplogroup Q‑M242

We calculated the frequencies of our samples and collected 
the frequency data from previous studies (ESM_2). As can 
be seen in Fig. 1, the frequencies of haplogroup Q-M242 
are low in most of the world, except for the Americas and a 
small part of Siberia, which matches previously published 
observations on the distribution of haplogroup Q (Bal-
anovsky et al. 2017). Moreover, we represented the migra-
tion routes of haplogroup Q-M242 based on our results and 
previous studies (Fig. 1, ESM_2). We also marked the main 
distribution regions of the subclades studied in this research 
(Fig. 1). We have constructed a phylogenetic tree within 
haplogroup Q to easily identify the downstream subclades 
(Fig. 2).

The network of haplogroup Q subclades

To reveal the detailed structures for subclades of haplogroup 
Q, we conducted a network analysis combining the SNP and 
the STR haplotype data for 471 individuals (Fig. 3). The net-
work of Q1a1a1-M120 included most samples from China 
along with a small number of Mongolian samples. The net-
work of Q1a2a1-L54 contained most samples from Siberia 
(Northern Asia/Russia), and few samples from Mongolia, 
China and Northern America. The network of Q1a1b-M25 
consisted of samples from Central Asia with a small number 
of Eastern Asian/Mongolian, Western Asian, Central and 

Fig. 3   Network of Y-STR haplotypes within haplogroup Q-M242. 
Q1a1a1-M120: cluster 1 is shared by 16 Eastern Asian/China samples 
and one Eastern Asian/Mongolia. Q1a2a1-L54: cluster 1 is shared by 
11 Northern Asian/Russian samples. Q1a1b-M25: cluster 1 is shared 
by five Central Asian samples. Q1a2-M346: cluster 1 is shared by 36 
Northern Asian samples and 1 Eastern Asian/Mongolia. Q1a2a1a2-
L804: cluster 1 is shared by two Western European samples and one 
Northern American sample. Q1a2b2-F1161: cluster 1 is shared by 
three Northern European samples and one Western European sam-
ple. Q1b1a-M378: cluster 1 is shared by 29 Jewish samples (14 from 
Central Europe; eleven from Eastern Europe; three from Southern 
Europe; one from Western Asia), one Western European sample, one 
Central European sample and one Southern Asian samples. Q1b1a1-
L245: cluster 1 is shared by 37 Jewish samples (16 from Central 
Europe; 14 from Eastern Europe; four from Western Asia; two from 
Southern Europe; one from Western Europe), one Western European 
sample and one Southern European sample. Samples included in 
every cluster 1 are colored by purple in ESM_1

◂
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Western European samples. The network of Q1a2-M346 
mostly contained samples from Northern Asia/Russia and 
Mongolia, and a few samples from Asia, Europe, the Ameri-
cas, and even Africa. The network of Q1a2a1a2-L804 had 
a central cluster shared by Western European and Northern 
American samples with other branches of Western, North-
ern and Central Europe. The network of Q1a2b2-F1161 was 
mainly composed of samples from Northern and Western 
Europe with two single branches of Southern and Western 
Asia. The network of Q1b1a-M378 was mainly composed of 
Jewish samples and a small number of Southern and Central 
Asian, Western, Northern and Southern European samples. 
The network of Q1b1a1-L245 had a star-like shape of Jewish 
samples and a small amount of European and Western Asian 
samples. We did not discuss the origins and migrations of 
samples from the Americas because we focused on the dis-
persals of haplogroup Q in Eurasia and just used samples 
from the Americas to construct the network.

Time estimates for haplogroup Q

We used BATWING to estimate the TMRCA and the expan-
sion time for the subclades of haplogroup Q. As seen in 
Table 1, the three genealogical mutation rates had approxi-
mately similar results, while using the evolutionary mutation 
rate resulted in a much older TMRCA. The genealogical 

mutation rates were more reliable when we analyzed a large 
number of loci and closely related individuals, whereas the 
evolutionary mutation rate tended to be more effective for 
estimates on a smaller number of loci and genetically distant 
individuals (Wang et al. 2014; Wang and Li 2015). Since 
we used from seven to fifteen loci in the time estimates, 
and the used populations belonged to the same subclades 
of haplogroup Q, we decided to use the results of the three 
genealogical mutation rates.

Discussion

Subclade Q1a1a1-M120 was found specifically in the Han 
Chinese with a low frequency (Zhong et al. 2011). Our 
results suggested that subclade Q1a1a1-M120 had migrated 
from Mongolia to China during the Neolithic period, and 
spread over China with the ancestors of Han Chinese (Fig. 3; 
Table 1; ESM_1). Previous studies showed that Q1a1a1-
M120 had migrated from north-western China to the Cen-
tral Plain as nomads, and merged into the northern Han 
Chinese farmers at approximately 2.5–3 KYA (Zhao et al. 
2010, 2014, 2015; Yan et al. 2014). Therefore, we supposed 
that the ancient nomads with Q1a1a1-M120 had migrated to 
south-eastward from north-western China and were assimi-
lated by the Han Chinese farmers (Zhao et al. 2015).

Table 1   The TMRCA and expansion times of haplogroup Q subclades (KYA)

TMRCA the time to the most recent common ancestor, KYA thousand years ago, EMR evolutionary mutation rate (EMR) (Zhivotovsky et al. 
2004), OMRB observed genealogical mutation rate (Shi et  al. 2010), OMRS observed genealogical mutation rate (Burgarella and Navascués 
2011), lmMR a genealogical mutation rate adjusted for population variation using logistic model (Wilson et al. 2003)

Branch (region or population) EMR (TMRCA/
expansion time)

OMRB (TMRCA/
expansion time)

OMRS (TMRCA/
expansion time)

lmMR 
(TMRCA/
expansion time)

Q1a1a1-M120 38.5/16.2 11.1/6.4 11.1/6.4 9.8/5.8
Q1a1a1-M120 DYS391 allele 6 (Han Chinese) 20.7/13.0 6.5/5.5 6.7/5.6 5.6/5.0
Q1a1a1-M120 DYS391 allele 9 (Han Chinese) 24.2/13.7 7.6/5.8 7.8/5.9 6.5/5.2
Q1a2a1-L54 (Yenisei basin) 10.4/9.2 2.5/3.4 2.4/3.3 0.3/0.4
Q1a1b-M25 (Turkic) 10.9/5.3 3.3/2.2 4.6/2.7 3.1/2.0
Q1a2-M346 (Turkic) 13.4/8.0 4.5/3.8 5.5/4.4 4.0/3.6
Q1a2-M346 (Western Asia) 15.1/11.4 4.4/4.6 5.8/5.5 4.0/4.3
Q1a2-M346 (Europe) 14.0/10.0 4.1/4.1 5.2/4.9 3.8/3.9
Q1a2a1a2-L804 19.0/12.6 5.8/5.5 7.1/6.3 5.3/5.2
Q1a2b2-F1161 8.6/6.4 2.6/2.6 3.3/3.1 2.3/2.4
Q1b1a-M378 (Jews) 4.9/4.0 1.5/1.6 1.8/1.8 1.4/1.5
Q1b1a-M378 (Europe) 6.0/5.2 1.8/2.1 2.4/2.6 1.7/1.9
Q1b1a-M378 (Southern Asia) 4.0/7.0 1.1/3.5 1.5/4.1 1.0/3.4
Q1b1a1-L245 (Jews) 23.2/9.1 9.8/5.0 10.9/5.4 8.6/4.8
Q1b1a1-L245 (Western Asia) 14.6/11.4 4.1/4.5 5.6/5.5 3.9/4.3
Q1b1a1-L245 (Southern Asia) 7.1/6.1 2.1/2.5 2.7/2.9 1.9/2.3
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Subclade Q1a2a1-L54 was mainly found in Yeniseian 
(Ket) and Samoyedic (Enets and Selkup) speakers (ESM_1). 
Genetic evidence showed that Yeniseian and Samoyedic 
speakers had genetic affinities to northern Altaians with high 
frequencies of haplogroup Q-M242 (xL54), while southern 
Altaians had many L54 samples and showed similarities 
with Turkic-speaking populations (Dulik et al. 2012b; Batt-
aglia et al. 2013; Flegontov et al. 2016). However, Yeniseian 
and Samoyedic samples in this study belonged to L54, which 
was different from the results of previous studies (xL54). 
In view of the time estimates (Table 1), we postulated that 
Q1a2a1-L54 had migrated from the southern Altai region 
and was assimilated into Yeniseian- and Samoyedic-speak-
ing populations during a recent historical period.

Both Q1a1b-M25 and Q1a2-M346 subclades were fre-
quent in Turkic-speaking populations, and their time esti-
mates were at approximately 3-5 KYA (ESM_1; Table 1). 
According to Fig. 3 and Table 1, Q1a1b-M25 had spread 
from Central Asia to Western Asia and to Hungary in Central 
Europe (ESM_1); Q1a2-M346 had migrated from Southern 
Siberia (Malyarchuk et al. 2011) to most parts of Eurasia 
and the Comoros Islands of Africa. The results coincided 
with Turkic nomadic migrations from Southern Siberia and 
Mongolia to Central and Western Asia, Caucasus, and East-
ern Europe (Yunusbayev et al. 2015). Therefore, we sug-
gested that Q1a1b-M25 and Q1a2-M346 probably migrated 
with Turkic nomads from Southern Siberia to most parts 
of Eurasia. A few Q1a1b-M25 and Q1a2-M346 samples in 
Mongolic-speaking populations probably indicated that Tur-
kic nomads had overlapped with Mongolic-speaking popu-
lations when they lived in the present Mongolian territory 
(Yunusbayev et al. 2015). An ancient DNA study showed 
that the Hungarians probably originated from Central 
Asia–Southern Siberia at approximately 4 KYA (Neparáczki 
et al. 2016), which was consistent with our time estimates 
(Table 1). Therefore, we proposed that Q1a1b-M25 and 
Q1a2-M346 had migrated from Central Asia–Southern Sibe-
ria to Central Europe at least 4 KYA. Three individuals of 
Africa (the Comoros Islands) that belonged to Q1a2-M346 
reaffirmed that Middle Eastern populations had a genetic 
influence on the Comoros Islands (Gourjon et al. 2011).

Subclades Q1a2a1a2-L804 and Q1a2b2-F1161 were the 
downstream of Q1a2-M346 (Fig. 2), both of which mainly 
distributed in Western and Northern Europe (Fig.  3). 
Q1a2a1a2-L804 arrived in Western and Northern Europe 
as early as 5-7 KYA (Table 1). Ancient DNA studies showed 
that first European farmers migrated from Central Europe 
to Western and Northern Europe between 5 and 7.5 KYA 
(Haak et al. 2005, 2010; Bramanti et al. 2009; Malmström 
et al. 2009). Therefore, we supposed that Q1a2a1a2-L804 
had spread from Central Europe to Western and Northern 
Europe with European early Neolithic farmers. The time 
estimate for Q1a2b2-F1161 was one thousand years later 

than its upstream clade Q1a2-M346 (Table 1), which seemed 
to be unrelated to the Neolithic transition of Europe (Haak 
et al. 2010). Since Q1a2-M346 spread across Europe at that 
time, it probably brought Q1a2b2-F1161 to Western and 
Northern Europe, and even to Western and Southern Asia 
(Khurana et al. 2014; Yunusbayev et al. 2015).

Subclades Q1b1a-M378 and Q1b1a1-L245 were cor-
related with the Jewish people, both of which probably 
represented that some of the Jewish Diaspora populations 
had expanded into Europe within historical times (Table 1; 
Fig. 3). As seen in Fig. 3, the central clusters of Q1b1a-
M378 and Q1b1a1-L245 mainly consisted of samples from 
Central and Eastern Europe. The results reaffirmed that some 
Jewish Diaspora populations had migrated from Central and 
Eastern Europe, and finally settled in other parts of Europe 
(Nogueiro et al. 2010; Zoossmann-Diskin 2010). Previous 
Y-chromosome studies showed that haplogroups J, R and 
Q3a1 had certain proportions in Jewish populations and 
spread over Europe (Nogueiro et al. 2010; Chaubey et al. 
2016; Balanovsky et al. 2017). Subclades Q1b1a-M378 
and Q1b1a1-L245 probably spread over Europe with hap-
logroups J, R and Q3a1. The Q1b1a-M378 samples from 
Southern Asia might represent the descendants of Ashkenazi 
Jewish populations because its upstream haplogroup Q-P36 
was regarded as minor Ashkenazi Jewish founding lineages 
in Southern Asia (Lee et al. 2014).

Our study of the human Y-chromosome haplogroup Q 
in Eurasia revealed a clear pattern of its migration routes 
during the past 10,000 years, especially in Han Chinese, 
Yeniseian-, Samoyedic-, Turkic- speaking and Jewish pop-
ulations. It is clear that a higher resolution database will 
be helpful to draw more conclusions on the origins, migra-
tions, and ethno-linguistic affiliations of haplogroup Q.
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