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Letter to the editor

Transgenerational analysis of H3K4me3 and H3K27me3 by ChIP-Seq n

Check for

links epigenetic inheritance to metabolism

Histone methylation is a kind of important epigenetic modifica-
tion which occurs on the lysine residue or arginine residue of his-
tone tails (Zhang and Reinberg, 2001). It takes part in multiple
biological processes, including gene expression, genomic stability,
stem cell maturity, genetic imprinting, mitosis and development
(Fischle et al., 2005). Abnormal histone methylation pattern may
lead to a series of disorders, such as metabolic diseases, psychiatric
disorders and cancer (Seligson et al., 2005; Peter and Akbarian,
2011). The transmission pattern of genetic information is extremely
consistent with Mendel's law, while the epigenetic transmission
pattern between generations remains to be elucidated. An
increasing number of studies show that many diseases such as can-
cer, diabetes and obesity cannot be explained by genetics alone and
may be related to epigenetic transmission (Jones and Baylin, 2007;
Kaelin and McKnight, 2013; Radford et al., 2014). So it is of great
importance to figure out the epigenetic transmission pattern
through generations.

A number of researches have reported the inheritance pattern
of DNA methylation during early embryonic development process
in lower organisms and mammals (Wang et al., 2014). Fewer
studies were carried out about histone methylation inheritance
due to its complexity and difficulty. A study in mammals reported
that reduction of H3K4 dimethylation in sperm impaired develop-
ment and survivability of offspring and persisted transgeneration-
ally (Siklenka et al, 2015). Another research showed the
reprogramming of H3K4me3 in mouse early development that
paternal H3K4me3 peaks were depleted in zygotes and reap-
peared at late two-cell stage while broad peaks of H3K4me3 exist
at promoters and distal loci (Liu et al., 2016; Zhang et al., 2016a).
They also found an extensive loss of H3K27me3 at the promoter
region of developmental genes accompanied by global erasure of
sperm H3K27me3 but inheritance of distal H3K27me3 from oo-
cytes in mouse (Liu et al., 2016; Zheng et al., 2016). Researches
above are about either the lower organisms or early embryos.
However, in the study of pedigree, it is still unclear whether his-
tone methylation could be inherited stably between generations,
and what roles the stably inherited epigenetic states play in bio-
logical processes.

In this study, we collected 17 male volunteers’ whole blood
from seven families of CAO Cao descendants in Shandong (Rushan),
Anhui and Zhejiang provinces (Wang et al., 2012) (Fig. S1A). The re-
lationships of all volunteers are shown in Fig. S1A. There are five
members at most and one member at least in each family. The
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oldest member is 86 years old and the youngest one is 16 years
old. To investigate the genome-wide distributions of the two his-
tone methylation H3K4me3 and H3K27me3, we chose chromatin
immunoprecipitation followed by high-throughput sequencing
(ChIP-Seq) technology to obtain the raw data. All samples had
two replicates and the accessible reads of each sample were greater
than 20 million, which was sufficient for subsequent analysis
(Tables S1, S2 and S3). Sequencing reads were aligned to the appro-
priate human reference genome (hg38) using BWA with default pa-
rameters. At the same time, we made statistical analysis of the
enrichment level on the reads in different genomic regions and
found that the peaks mainly distributed in intron and intergenic
regions (Fig. S2).

Our previous study showed that DNA methylation was evolu-
tionarily conserved on the Y chromosome (Zhang et al., 2016b).
Here, we assessed whether active chromatin modification
H3K4me3 and repressive chromatin modification H3K27me3 bind-
ing events also co-occurred across the human 17 samples. We per-
formed genome-wide screen of these chromatin modification
peaks to identify co-occurred peaks with overlapping at least 1
bp across 17 samples. There were 9757 common peaks of
H3K4me3 among 17 samples and 1011 common peaks of
H3K27me3 among 17 samples. We separately selected top 1000
peaks for two modifications according to standard deviation range
from small to large and then annotated these peaks to associated
RefGenes. About 80% of the common peaks located at distal regions
from transcription start site (TSS) (at —500 kb to —5 kb and +5 kb to
500 kb from TSS), which is distinctly different from all peak distri-
bution patterns around TSS (Fig. S1B). These results indicated that
the relatively conserved peaks may play a particular role in biolog-
ical functions at distal TSS.

Members in the same family may have the similar diet and
living habits, which may have a significant influence on epige-
nomes of human bodies. To detect family-specific binding regions,
we defined the peak that existed in all members within a family and
not appeared in other families as family-specific binding regions.
For H3K4me3 modifications, we detected 3999, 49, 65 and 313
family-specific binding regions for RS_FamilyA, RS_FamilyB, RS_Fa-
milyC and RS_FamilyD, respectively (Fig. S3A). After classifying
above enriched regions to associated genes, these peaks were asso-
ciated with 1741, 22, 33 and 91 family-specific genes in families
(Fig. S3B). In order to study their functions, we used the GREAT
(version 3.0) to perform gene ontology (GO) analysis for the
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Fig. 1. Identification of family-specific binding sites of H3K4me3 and H3K27me3 modification in Rushan samples. A and B: GO biological process enrichment of family-specific
binding sites of H3K4me3 (A) and H3K27me3 (B). The length of blue horizontal histogram represents binomial p value (—logo). C and D: Correlation heat map shows the clus-
tering of two big Rushan family samples using only differential binding sites of H3K4me3 (C) and H3K27me3 (D). The names of samples are shown at right and below. E and F:
Principal component analysis of H3K4me3 (E) and H3K27me3 (F) of all Rushan samples. Each dot presents a sample and the legend indicates family names.
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detected family-specific regions (McLean et al., 2010). Results indi-
cated that the peaks were enriched on the genes associated with
three glycogen metabolic pathways (Fig. 1A). Additionally, we also
analyzed the family-specific peaks for H3K27me3. We found that
there were 3045, 420, 412 and 1914 family-specific binding regions
for RS_FamilyA, RS_FamilyB, RS_FamilyC and RS_FamilyD, respec-
tively (Fig. S3C). These family-specific peaks of H3K27me3 were an-
notated to 492, 82, 211 and 1296 family-specific genes, respectively
(Fig. S3D). Through the GO analysis, we found that the peaks of
H3K27me3 associated genes were related to three lipid metabolic
processes (Fig. 1B). We used DiffBind R package to analyze the dif-
ferential binding sites. We did sample cluster analysis of H3K4me3
(Fig. 1Cand E) and H3K27me3 (Fig. 1D and F) using Rushan samples
and all 17 samples (Fig. S4). We found that the histone modification
pattern of members in the same family can be clustered together
but cannot be clustered according to the distance of genetic
relationship.

Through the bioinformatic analysis of histone modification
pattern of H3K4me3 and H3K27me3, we found that both
H3K4me3 and H3K27me3 histone modifications had a family-
dependent conservation. Additionally, H3K27me3 was more conser-
vative compared with H3K4me3. Transgenerational epigenetic in-
heritance is a topic of great interest with many unclear questions.
It has been reported in animal experiments that the impact of nutri-
tion, smoking and irradiation may affect the children's phenotype,
and parent and offspring have similar epigenetic profiles (Radford
et al., 2014). The family specific methylation pattern of H3K4me3
and H3K27me3 between generations indicated that both of the
two histone methylations may be transgenerationally inheritable.
Several studies have found that some small molecules in vivo, such
as miRNA, tRNA and prions, play important roles in regulating the
epigenetic modification inheritance between generations (Uptain
and Lindquist, 2002; Halfmann and Lindquist, 2010; Gapp et al,,
2014; Huypens et al., 2016). Here, we firstly used the haplogroup
samples as research model to study the inheritance of histone modi-
fication between generations.

Our results also showed that the conservative modifications of
H3K4me3 and H3K27me3 were separately enriched in three
metabolic glycogen pathways and three metabolic lipid path-
ways, indicating that both of the two histone methylations
were important for the normal physiological functions. Histone
modifications can not only influence the structure of chromatin
but also serve as recognition elements for proteins binding
particular modifications. Each of these modifications is closely
related to the metabolic state and catalytic processes of the
cell. It is interesting that the family specific histone methylation
pattern is linked with metabolism. Our result indicated that
inheritable epigenetic variations may also make contribution to
inheritable metabolic abnormalities.
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