COM.on C.A.4:e10/57-60   Online published on Jun.22, 2010.
doi:10.4236/coca.2010.41010
REVIEW
Several Problems Appearing in Genome-Wide Association Study

PENG Qianqian

MOE Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433 China

ABSTRACT: The coming-forth of genome-wide association study had brought in new frontiers of complex disease association study, which was designed to discover all the disease loci. But along with the processing of genome-wide association study, the result of it was not as satisfying as researchers primarily expected. But the imperfect outcome of genome-wide association study was not only due to the methods applied to it, but there were also many other reasons. In this review, we focused on some problems encountered in genome-wide association study, including the argument among statistical interaction and biological interaction, the characteristics of genome-wide genotyping data and related methods developing, hypothesis of disease model and so on. The renewed learning and thinking on the genome-wide association study would give efficient supervision in the following study.

Key words: genome-wide association study; interaction; characteristics of data; model hypothesis

Recieved: Jun.7, 2010   Accepted: Jun.11, 2010  Corresponding: qqpeng2009@gmail.com


《现代人类学通讯》第四卷e10篇 第57-60页  2010年6月22日网上发行

专题综述

对全基因组关联分析中一些问题的思考

彭倩倩

复旦大学生命科学学院现代人类学教育部重点实验室 上海200433

摘要:全基因组关联分析的出现,曾经令研究者们看到了复杂疾病致病机制研究的新契机——从全基因组分型数据中寻找所有可能的致病位点。但是随着全基因组关联分析的逐步推进,其结果并没有研究者预期的那么理想。全基因组关联分析的结果不理想,不仅仅是分析方法的问题。本文对全基因组关联分析中遇到的一些问题,如交互作用的争议,全基因组分型数据的特征以及相关方法构建,疾病模型假设等方面进行了讨论。对于全基因组关联分析的重新认识和思考对今后的工作将提供有力的指导。

关键词: 全基因组关联分析;交互作用;数据特征;模型假设

收稿日期2010年6月7日  修回日期: 2010年6月11日 联系人: 彭倩倩 qqpeng2009@gmail.com
全文链接 Full text: [PDF]

参考文献 References

1.McCarthy MI, Zeggini E (2009) Genome-wide association studies in type 2 diabetes. Curr Diab Rep 9: 164-171.
2.Hirschhorn JN, Lettre G (2009) Progress in genome-wide association studies of human height. Horm Res 71 Suppl 2: 5-13.
3.Grant SF, Hakonarson H (2009) Genome-wide association studies in type 1 diabetes. Curr Diab Rep 9: 157-163.
4.Franke B, Neale BM, Faraone SV (2009) Genome-wide association studies in ADHD. Hum Genet 126: 13-50.
5.Ozaki K, Tanaka T (2005) Genome-wide association study to identify SNPs conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci 62: 1804-1813.
6.Weale ME (2010) Quality control for genome-wide association studies. Methods Mol Biol 628: 341-372.
7.Robinson R (2010) Common disease, multiple rare (and distant) variants. PLoS Biol 8: e1000293.
8.Need AC, Goldstein DB (2010) Whole genome association studies in complex diseases: where do we stand? Dialogues Clin Neurosci 12: 37-46.
9.Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8: e1000294.
10.Cho JH (2010) Genome-wide association studies: present status and future directions. Gastroenterology 138: 1668-1672 e1661.
11.Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362-9367.
12.Garcia-Magarinos M, Lopez-de-Ullibarri I, Cao R, Salas A (2009) Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction. Ann Hum Genet 73: 360-369.
13.Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241: 252-261.
14.Brassat D, Motsinger AA, Caillier SJ, Erlich HA, Walker K, Steiner LL, Cree BA, Barcellos LF, Pericak-Vance MA, Schmidt S, Gregory S, Hauser SL, Haines JL, Oksenberg JR, Ritchie MD (2006) Multifactor dimensionality reduction reveals gene-gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes Immun 7: 310-315.
15.Cook NR, Zee RY, Ridker PM (2004) Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 23: 1439-1453.
16.Bastone L, Reilly M, Rader DJ, Foulkes AS (2004) MDR and PRP: a comparison of methods for high-order genotype-phenotype associations. Hum Hered 58: 82-92.
17.Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19: 376-382.
18.Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138-147.
19.Nelson MR, Kardia SL, Ferrell RE, Sing CF (2001) A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11: 458-470.
20.Wu X, Jin L, Xiong M (2008) Composite measure of linkage disequilibrium for testing interaction between unlinked loci. Eur J Hum Genet 16: 644-651.
21.Kang G, Yue W, Zhang J, Cui Y, Zuo Y, Zhang D (2008) An entropy-based approach for testing genetic epistasis underlying complex diseases. J Theor Biol 250: 362-374.
22.Dong C, Chu X, Wang Y, Jin L, Shi T, Huang W, Li Y (2008) Exploration of gene-gene interaction effects using entropy-based methods. Eur J Hum Genet 16: 229-235.
23.Cui Y, Kang G, Sun K, Qian M, Romero R, Fu W (2008) Gene-centric genomewide association study via entropy. Genetics 179: 637-650.
24.Zhao J, Jin L, Xiong M (2006) Test for interaction between two unlinked loci. Am J Hum Genet 79: 831-845.
25.Peng Q, Zhao J, Xue F (2010) A gene-based method for detecting gene-gene co-association in a case-control association study. Eur J Hum Genet 18: 582-587.
26.Peng Q, Zhao J, Xue F (2010) PCA-based bootstrap confidence interval tests for gene-disease association involving multiple SNPs. BMC Genet 11: 6.
27.Jung J, Zhao Y (2010) Allelic based gene-gene interaction in case-control studies. Hum Hered 69: 14-27.
28.Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10: 392-404.
29.Musani SK, Shriner D, Liu N, Feng R, Coffey CS, Yi N, Tiwari HK, Allison DB (2007) Detection of gene x gene interactions in genome-wide association studies of human population data.
Hum Hered 63: 67-84.
30.贾崇奇(2005) 交互作用分析方法. 见: 赵仲堂(ed) 流行病学研究方法与应用. 北京: 科学出版社, 523-544.
31.Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 11: 2463-2468.
32.Gronlund A, Bhalerao RP, Karlsson J (2009) Modular gene expression in Poplar: a multilayer network approach. New Phytol 181: 315-322.
33.Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4: e1000117.
34.Peng G, Luo L, Siu H, Zhu Y, Hu P, Hong S, Zhao J, Zhou X, Reveille JD, Jin L, Amos CI, Xiong M (2010) Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet 18: 111-117.
35.Luo L, Peng G, Zhu Y, Dong H, Amos CI, Xiong M (2010) Genome-wide gene and pathway analysis. Eur J Hum Genet, in press.