COM.on C.A.5:e11/56-62   Online published on Sep.20, 2011.
doi:10.4236/coca.2011.51011
REVIEW
Delaying childbirth speeds the human rate of evolution

Xinzhu Wei

MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China

ABSTRACT: Compared to one hundred years ago, Marriage and procreation tend to be delayed until later in life. This delay can be attributed to physical maturation preceding psychological maturation, a phenomenon which was unprecedented in human evolutionary history until about 100 years ago. The factors that influence human evolution are much more complicated than those involved in the evolution of mammals because humans can adjust their reproduction cycle by choosing when to procreate. The age of procreation has a great effect on the rate of human evolution, which is also influenced by many other mechanisms. In order to get a precise estimate of the rate of human evolution, we need to clarify the cellular and molecular mechanisms. To better understand these mechanisms, the male-driven evolution hypothesis, the generation time hypothesis, and the metabolic rate hypothesis are combined herein. By illustrating the mechanism of sperm generation and the times of DNA replication during sperm generation, we conclude that delaying childbirth has accelerated the rate of evolution by increasing the times mitosis occurs during the generation of sperm.

Key words: Male-driven evolution, delaying childbirth, evolutionary rate, DNA replication

Recieved: Jun.29, 2011   Accepted: Sep.19, 2011  Corresponding: Wisezeal.Xinzhu@gmail.com


《现代人类学通讯》第五卷e11篇 第56-62页  2011年9月20日网上发行

专题综述

晚育加速人类的进化

魏馨竹

复旦大学生命科学学院现代人类学教育部重点实验室,中国 上海200433

摘要:现代的人与古代相比并不急于结婚生子,越来越多的人推迟结婚时间和生育时间。在二十世纪之前,生理成熟与心理成熟一直同时发生,人们在性成熟之后很快就开始生育第一个后代。而现今,人们的生理成熟普遍较早,而心理成熟较晚,需要经过漫长的社会成熟,才能结婚生子,这就改变了人类的世代周期长度。因此,人类世代周期长度的控制不同于其它哺乳动物,人们可以相对自由地调控生育年龄。这个特点使得男性性成熟后产生精子前经历的DNA复制次数大大增加,从而影响到进化速率。性成熟之后经历的DNA复制次数在分子钟假说和世代周期假说中都没有考虑进去。这两种假说分别使用年和世代为单位来构建系统发育树,但是年和世代并不直接等比于进化速率,因而得到的结果并不十分准确。准确估算人类的进化速率需要依靠有丝分裂和减数分裂中不同的DNA修复机制和具体的突变速率,就必须将男性主导进化假说、世代周期假说以及代谢速率假说结合起来。本文介绍了各种传统的进化速率模型,并详细介绍精子产生的机制以及在精子产生过程中经历的DNA复制次数的计算方法。我们认为,晚育现象增加了精子产生前的有丝分裂次数,这一变化加快了人类进化速率。

关键词男性主导的进化;晚育;进化速率;DNA复制

 

收稿日期:2011年6月29日  修回日期:2011年9月19日 联系人:魏馨竹 Wisezeal.Xinzhu@gmail.com


全文链接 Full text: [PDF]

参考文献 References

1. Miyata T, Hayashida H, Kuma K, Mitsuyasu K, Yasunaga T (1987) Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb Symp Quant Biol, 52:863-867.
2. Bryson V, Vogel HJ (1965) Evolving Genes and Proteins. Science, 147:68-71.
3. Tsantes C, Steiper ME (2009) Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc Natl Acad Sci U S A, 106:18165-18170.
4. Thomas JA, Welch JJ, Lanfear R, Bromham L (2010) A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol, 27:1173-1180.
5. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A, 90:4087-4091.
6. Haldane JB (1947) The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann Eugen, 13:262-271.
7. Makova KD, Li WH (2002) Strong male-driven evolution of DNA sequences in humans and apes. Nature, 416:624-626.
8. Roenneberg T, Aschoff J (1990) Annual rhythm of human reproduction: II. Environmental correlations. J Biol Rhythms, 5:217-239.
9. Roenneberg T, Aschoff J (1990) Annual rhythm of human reproduction: I. Biology, sociology, or both? J Biol Rhythms, 5:195-216.
10. Rojansky N, Brzezinski A, Schenker JG (1992) Seasonality in human reproduction: an update. Hum Reprod, 7:735-745.
11. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP (2003) The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev, 24:668-693.
12. Van Weissenbruch MM, Engelbregt MJ, Veening MA, Delemarre-van DWH (2005) Fetal nutrition and timing of puberty. Endocr Dev, 8:15-33.
13. Gluckman PD, Hanson MA (2006) Evolution, development and timing of puberty. Trends Endocrinol Metab, 17:7-12.
14. Gillman LN, Keeling DJ, Ross HA, Wright SD (2009) Latitude, elevation and the tempo of molecular evolution in mammals. Proc Biol Sci, 276:3353-3359.
15. Shimmin LC, Chang BH, Li WH (1993) Male-driven evolution of DNA sequences. Nature, 362:745-747.
16. Ellegren H, Fridolfsson AK (1997) Male-driven evolution of DNA sequences in birds. Nat Genet, 17:182-184.
17. El-Maarri O, Olek A, Balaban B, Montag M, Van der Ven H, Urman B, Olek K, Caglayan SH, Walter J, Oldenburg J (1998) Methylation levels at selected CpG sites in the factor VIII and FGFR3 genes, in mature female and male germ cells: implications for male-driven evolution. Am J Hum Genet, 63:1001-1008.
18. Erlandsson R, Wilson JF, Pääbo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol, 17:804-812.
19. Whittle CA, Johnston MO (2002) Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol Biol Evol, 19:938-949.
20. Li WH, Yi S ,Makova K (2002) Male-driven evolution. Curr Opin Genet Dev, 12:650-656.
21. Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H (2005) Male-driven biased gene conversion governs the evolution of base composition in human Alu repeats. Mol Biol Evol, 22:1468-1474.
22. Baarends WM, Van der Laan R, Grootegoed JA (2001) DNA repair mechanisms and gametogenesis. Reprod, 121:31-39.
23. Lazar L, Pertzelan A, Weintrob N, Phillip M, Kauli R (2001) Sexual precocity in boys: accelerated versus slowly progressive puberty gonadotropin-suppressive therapy and final height. J Clin Endocrinol Metab, 86:4127-4132.
24. Bromham L (2009) Why do species vary in their rate of molecular evolution? Biol Lett, 5:401-404.
25. Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet, 8:619-631.
26. Goetting-Minesky MP, Makova KD (2006) Mammalian male mutation bias: impacts of generation time and regional variation in substitution rates. J Mol Evol, 63:537-544.
27. Elango N, Lee J, Peng Z, Loh YH, Yi SV (2009) Evolutionary rate variation in Old World monkeys. Biol Lett, 5:405-408.
28. Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell, 19:675-686.
29. Arnheim N, Shibata D (1997) DNA mismatch repair in mammals: role in disease and meiosis. Curr Opin Genet Dev, 7:364-370.
30. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U (1999) Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod, 4:31-37.
31. Kim SY, Drummond H, Torres R, Velando A (2011) Evolvability of an avian life history trait declines with father's age. J Evol Biol, 24:295-302.
32. Krishnaswamy S, Subramaniam K, Ramachandran P, Indran T, Abdul AJ (2011) Delayed fathering and risk of mental disorders in adult offspring. Early Hum Dev, 87:171-175.
33. Mouchiroud L, Molin L, Dalliere N, Solari F (2010) Life span extension by resveratrol, rapamycin, and metformin: The promise of dietary restriction mimetics for an healthy aging. Biofactors, 36:377-382.
34. Li H, Gu S, Han Y, Xu Z, Pakstis AJ, Jin L, Kidd JR, Kidd KK (2011) Diversification of the ADH1B Gene during Expansion of Modern Humans. Ann Hum Genet, 75:497-507.
35. Lammers P (2004) Industry update. Serono: innovative research in reproductive health and infertility. Fertil Steril, 81(S2):53-54.
36. Chervenak JL, Kardon NB (1991) Advancing maternal age: the actual risks. Female patient, 16 (11):17-24.
37. Edwards RD, Roff J (2010) Negative effects of paternal age on children's neurocognitive outcomes can be explained by maternal education and number of siblings. PLoS One, 5:e12157.
38. Becker NS, Verdu P, Hewlett B, Pavard S (2010) Can life history trade-offs explain the evolution of short stature in human pygmies? A response to Migliano et al. (2007). Hum Biol, 82:17-27.
39. Migliano AB, Vinicius L, Lahr MM (2007) Life history trade-offs explain the evolution of human pygmies. Proc Natl Acad Sci U S A, 104:20216-20219.